Lost wisdom – Fascinating observations of sages of their time
Under construction
LESSONS OF THE HUNZA,
The importance of minerals, sunshine, and potential better growth of cattle raised on feed from well manured as against artificially fertilsed feedstock, as recorded by J. I. Rodale.
The combination of the level of mineralisation of their glacial water combined with their agricultural practices of returning all organic matter, including non-industrialised composted human waste, to the soil are likely a significant part of the explanation of the health of the Hunza and their crops.
Compare to neighbours they lived in valleys that got plenty of sunshine. This would have effected plant growth, phytonutrient composition, their vitamin D levels, etc. and may be a factor explaining health and behavioral disposition in comparison to those in adjoining valleys which were less sunny.
The video powerfully shows apparent yields and the remarkable quality of crops produced without ‘modern’ fertilisers or pesticides.
Clearly one factor was time and manpower to tend crops including manual removal of pests but none the less the video is truly thought provoking.
The world has changed, but our current waste management practices including disposal of human waste are not sustainable in the long term. We urgently need to find ways to safely collect organic resources including human waste, without mixing them with other pollutants, process them to remove pathogens, man made medical drugs etc., and return them to the land.
J.I. Rodale 1948 The Healthy Hunzas Link
J. I. Rodale Wikipedia entry Link
Rodale (Organic Farming) Insititue Link
“Chapter I
Sir Robert McCarrison
IN NOVEMBER, 1921, a great English physician, Sir Robert McCarrison, visited our country at the invitation of the University of Pittsburgh to deliver the sixth Mellon Lecture before the Society for Biological Research. The subject of his paper was “Faulty Food in Relation to Gastro-Intestinal Disorders,” and its salient points centered on the marvelous health and robustness of the Hunzas, who dwell on the northwestern border of India. This region is located where Afghanistan, China and Russia converge, with Tibet 300 to 1,000 miles to the east. . . MORE”
“”Sir Robert McCarrison first attracted attention when he was but twenty- five years old by discovering that three-day fever, which was so widely prevalent in India, was caused by the bite of the sand-fly. He followed this scientific disclosure with nine years of medical work in the political province called the Gilgit Agency, which consisted of six separate districts, including the villages of the Hunzas. In this section of India, goitre and cretinism were alarmingly rampant, but the Hunzas were strangely immune. McCarrison discovered that goitre could be acquired by the drinking of polluted water. To prove it, he experimentally subjected himself and fifteen volunteers to the disease and then effected a cure by removing the cause. (please see chapter – McCarrison was on the the original researchers into goitre and related conditions. He not suggesting it pollution was the root cause but had identified it as a contributory factor)
“McCarrison places the factor of vital food before all others when he says in his book Nutrition and National Health: “I know of nothing so potent in maintaining good health in laboratory animals as perfectly constituted food: I know of nothing so potent in producing ill health as improperly constituted food. This, too, is the experience of stockbreeders. Is man an exception to a rule so universally applicable to the higher animals?” To develop this point he embarked on an ingenious series of experiments with albino rats at Coonoor in 1927. At this time he was director of Nutrition Research for the entire country of India, an assignment which gave him world-wide recognition as an authority on nutrition.
He decided to find out if rats could be endowed with health equal to that enjoyed by the Hunzas through feeding the rodents on a similar diet. One group was, consequently, fed the diet upon which the Hunzukuts and other healthy peoples of Northern India, such as the Sikhs, Pathans and Mahrattas, subsist. On the other hand, another group of rats were fed the poor diet of the Southern India rice-eaters, the Bengali and Madrassi. In his aforementioned book, McCarrison referred to a nutritional authority, McCay, who twenty-five years before had written “As we pass from the Northwest region of the Punjab down the Gangetic Plain to the coast of Bengal, there is a gradual fall in the stature, body weight, stamina and efficiency of the people. In accordance with this decline in manly characteristics it is of the utmost significance that there is an accompanying gradual fall in the nutritive value of the dietaries.” And so McCarrison found it.
A third group of rats was subjected to the diet of the lower classes of England, containing white bread, margarine, sweetened tea, a little boiled milk, cabbage and potatoes, tinned meats and jam. The results were startling. McCarrison described the first group as being hunzarized. “During the past two and a quarter years,” he stated, “there has been no case of illness in this ‘universe’ of albino rats, no death from natural causes in the adult stock, and but-for a few accidental deaths, no infantile mortality. Both clinically and at post-mortem examination this stock has been shown to be remarkably free from disease. The Bengali group of rats suffered from a wide variety of diseases which involved every organ of the body such as the nose, eyes, ears, heart, stomach, lungs, bladder, kidneys, intestines, the blood, glands, nerves and reproductive organs. In addition, they suffered from loss of hair, malformed and crooked spines, poor teeth, ulcers, boils and became vicious and irritable.”
The “English” rats also developed most of these troubles. They were nervous and apt to bite their attendants; they lived unhappily together and by the sixtieth day of the experiment they began to kill and eat the weaker ones amongst them.
You would think that the demonstration of the fact that the practically complete elimination of disease in an entire group could be effected by the mere eating of proper foods would create a tremendous stir in medical circles, would crystallize a demand that the mechanism be immediately created for carrying these findings into actual practice! It didn’t even produce a tiny ripple in the pond of medical inertia. The doctor is too much involved in the morasses of disease and physic, to be able to give much time to the question of health. And the general public either doesn’t give a hoot or is too poorly organized to demand its right to be shown how to acquire a healthy body. Consequently, except for the occasional and morbid valetudinarians in our midst, chronics obsessed by the drive to describe and compare symptoms even over dinner-tables, most of us, ostrich-like, ignore the subject of health completely. But it is there and can be disregarded only at an exorbitant eventual cost. This myopic attitude tends to encourage procrastination, and then, unfortunately the ambulance has to make an emergency trip. A friend of mine recently expressed this prevailing attitude of indifference to health by saying, “I’ll take care of my cancer and you take care of yours.” In other words, all of us are prone to an epicurean policy of enjoying things blithely while we may, heedless of the morrow. As a lady facilely said, “I think of health only when I’m sick.”” END CHAPTER
”
Chapter II
Sir Albert Howard
AT THE TIME McCarrison was working among the Hunzas, another great idealist, Sir Albert Howard, was engaged in agricultural research at Pusa, in southern India. It is unfortunate that these two men could not have met then, because they would have supplemented each others’ researches materially. Neither one had as yet attained to his knighthood. That came later as a reward for brilliant achievements in their particular fields of work. In the researches of Sir Albert Howard, whose recent death on October 20, 1947, was a great loss to all organiculturists, was disclosed the secret of the robust health of the Hunzas.
As a mycologist, or student of fungus growths in the West Indies, he had an opportunity to observe the diseases of sugar cane. He came to the conclusion that the existing methods of scientific research under which specialists learned “more and more about less and less,” while as researchers they were sequestered in little cubbyholes, playing around with hop-o’-my-thumb experiments in flower pots, would never solve the problem of plant disease. When in 1905, he was appointed to the coveted position of Imperial Economic Botanist to the Government of India, he decided upon a daring course of action. He would get out of his cubby-hole and break away from the traditional method of using pocket-handkerchief plots for the experimental growth of plants.
For years in the West Indies he had been thinking along revolutionary lines. He believed he had found the basic cause of disease in growing plants, but to prove his point he intended to be practical and to apply his theory on a farm scale, not in little glass tumblers. He experienced a little difficulty in getting the higher-ups to agree to such an unheard of practice, but finally, after stubbornly adhering to his objective, he obtained 75 acres of land with sufficient money and no restrictions of any kind to hinder the carrying out of his revolutionary idea. His theory was, not to wait until the plant got sick, not to use the artificial method of spraying poisons to prevent disease organisms from taking hold, but to endow the plant with such strength that it could resist disease organisms. He stood for preventive as opposed to corrective measures.
Sir Albert had an instinctive feeling that the use of chemical fertilizers was doing more harm than good, that it was destroying the life and vitality of the topsoil, that it was merely a “shot-in-the-arm” which gave a momentarily stimulated spurt in yield, but struck back viciously later in bringing about conditions that actually invited disease.
Around Pusa he noticed that the natives never used artificial fertilizers or poison sprays, but were extremely careful in returning all animal and plant residues to the soil. Every blade of grass that could be salvaged, all leaves that fell, all weeds that were cut down found their way back into the soil, there to decompose and take their proper places on Nature’s balance sheet. But in our country this “law of return” is flagrantly violated by the modern, scientific farmer, with proper coaching from the professors in the agricultural colleges. The old method, they contend, involves too much manual labor. They resort instead to the factory-made “devil’s dust” powders which come in convenient bags and which allow them plenty of time to go to Grange meetings. Perplexed, they listen to the advice of the apostles of the new agriculture on how to spend a great deal of time and manual effort in coping with plant and animal diseases which their grandfathers, who more or less practiced the “law of return,” knew very little about. The minute they forsake the methods of their fathers and grandfathers and become scientific, they have set up a process of slow but sure devolution which will cause them to do twice as much work eventually.
Sir Albert applied the Pusa methods to his farm for five years and wasn’t surprised when he observed a gradual lessening of disease. The most amazing development occurred with respect to his work-oxen, which were fed the lush crops raised on land that was becoming more and more enriched with living, organic fertilizer material, and not with dead chemicals. Sir Albert’s small farmyard was separated from the large cattle-shed of a neighboring farm by only a low hedge and his oxen often rubbed noses with foot-and-mouth cases. In spite of the fact that they had not received inoculations, his cattle did not contract the disease. Sir Albert Howard duplicated this test on different occasions at other experimental stations, notably at Quetta (1910-1918) and Indore (1924-1931). He proved again and again that disease could be eradicated through proper nutrition.
Howard became famous for his development of a process (it has been termed the Indore method) for making a compost fertilizer. In observing the ways of Nature in field and forest he discovered that there is a relationship between plant and animal matter of three to one: three parts plant to one part animal. Animal matter takes in bird droppings, the decaying bodies of dead earthworms, insects and other animals in the soil. Plant matter includes dying weeds, fallen leaves, etc. His Indore compost method is based on this three-to-one ratio.
Sir Albert’s idea spread. It was put into practice on coffee, sugar-cane plantations and tea-growing estates and by cotton, sisal and rice growers, as well as by many farmers in England. Wherever the use of common synthetic fertilizers was abandoned and compost substituted, there resulted a tremendous reduction in disease, a higher quality of crop and comparable if not superior yields. Sir Albert Howard sums up his work with the classic statement, “Artificial chemical fertilizers lead to artificial nutrition, artificial animals and finally to artificial men and women.” Another author put it in a different way. He said, “The only crop that can be raised on poor land is poor people.”
Eventually Howard and McCarrison met and the missing link in the Hunza chain was supplied. McCarrison embraced Howard’s work with enthusiasm. In his series of Cantor lectures delivered before the Royal Society of Arts in 1936 (published in book form under the title Nutrition and National Health) McCarrison said, “Further, the quality of vegetable foods depends on the manner of their cultivation; on the condition of soil, manure, rainfall, irrigation. Thus we found in India that foodstuffs grown on soil manured with farmyard manure were of higher nutritive quality than those grown on the same soil when manured with chemical manure. Spinach grown in a well-tended and manured kitchen-garden was richer in vitamin C than that grown in an ill-tended and inadequately manured one. Examples of this kind might be multiplied, but these suffice to indicate ways in which agricultural practice is linked with the quality of food. . . .”
In 1926, at Madras, India, McCarrison again proved that grains grown with compost as the fertilizer element contained more vitamins than those on which artificial fertilizers were employed. The Journal of Indian Medical Research (14:351, 1926) gives a full description of these tests. In the Journal of the Royal Society of Arts January 2, 1925) McCarrison said further, “Does the nutritive and vitamin value of cereals vary with the conditions of their growth? During the course of an exhaustive inquiry into the food value of the various rices in common use in India, I had reason to suspect that such might be the case. I found that various paddies varied considerably in their nutritive values. I could find no reason for this in their chemical composition. So it occurred to me that it might be due to differences in the content of vitamins, i. e., of substances which are incapable of detection by chemical means. Such differences might, I thought, be brought about by differences in soil or manure, or other conditions of growth of the grains. It was not possible to put this conception to the test in the case of rice, but it was possible to do so if I used millet, which is another staple grain largely used in India. Accordingly, Dr. Norris, Agricultural Chemist to the Madras Government, had nine of the experimental plots at the Agricultural Farm, Coimbatore, sown with the same millet seed. These plots have been in existence for 15 years or so and have been manured in different ways. One had no manure in all this time; another was manured with nitrates; another with phosphates; another with potash; others with various combinations of these, including one which received a complete chemical manure; the ninth plot has been manured with the natural manure of cattle. When the time came these various plots were cropped, the crops weighed and samples from each crop analyzed by Dr. Norris. There were the usual variations in quantity of the crops, and the usual differences in chemical composition associated with different forms of manuring, but the chemical analysis provided no consistent evidence that the nutritive value of the different samples might vary because of variations in certain chemical constituents of the grain. When I came to test the quality of these grains by feeding-experiments on animals, I found that the millet grown on soil manured with natural cattle manure was more nutritious and contained more vitamins than that grown on an exhausted soil, the latter being the worst of all in these respects. I was in the middle of this work when my researches came to an untimely end owing to financial retrenchments in India, so I was not able to repeat the experiments, nor to extend them to other grains. I wish, therefore, to be very guarded in drawing conclusions from them, but it does seem that the nutritive and vitamin values of millet seeds depend on the manurial conditions of their growth.” This observation is of tremendous significance and opens up a field of investigation which may prove to be of great importance not only for India, but for other countries.
Several other investigators, M. J. Rowlands and Barbara Wilkinson, carried out tests which gave similar results. In the Biochemical Journal (Vol. 24 No. 1, 1930) they say, “This research was undertaken because one of us (M.J.R) had noticed that pigs which were fed on home-grown and home-ground barley and wheat always did much better than those pigs which were fed on purchased barley and wheat, and that certain cattle did better on certain fields. It was decided to find out whether this was due to the lack of lime or other mineral constituents of the land. The results of this investigation were not satisfactory. It was then decided to try the effect of artificial manure versus dung.
“A crop of clover and grass was grown, one-half fertilized with dung, the other half with chemical fertilizers including basic slag, kainit and sulphate of ammonia. Then rats were tested by feeding them the product of these fields . . . .
“. . . . the rats were divided into two lots; one lot was put on a deficiency diet with 20 per cent of the ‘artificial’ seed . . . The rats on the ‘dung’ seed showed good growth or a slightly subnormal growth. . . . The rats on the ‘artificial’ seeds all grew very poorly, not one giving normal growth. . . . It can be seen that the former have gained nearly twice as much as the latter. . . . The rats on the ‘artificial’ seed were in a poor condition; in some the hair was falling.””
Abstract from
J.I. Rodale 1948 The Healthy Hunzas
Available free here link
FURTHER RECOMMENDED READING ON THE HUNZA
Wrench, G. T., M.D. (1938). The Wheel of Health
Available free here link